Saturday, December 14, 2024

EPFL: Breakdown and repair of the aging brain metabolic system



The study presented explores the complex relationship between the aging brain, energy metabolism, blood flow and neuronal activity by introducing a comprehensive, data-driven molecular model of the neuro-glial vascular system, including all key enzymes, transporters, metabolites, and blood flow vital for neuronal electrical activity with 16’800 interaction pathways. We find significant alterations in metabolite concentrations and differential effects on ATP supply in neurons and astrocytes and within subcellular compartments within aged brains, and identify reduced Na+/K+-ATPase as the leading cause of impaired neuronal action potentials. The model predicts that the metabolic pathways cluster more closely in the aged brain, suggesting a loss of robustness and adaptability. Additionally, the aged metabolic system displays reduced flexibility, undermining its capacity to efficiently respond to stimuli and recover from damage. Through transcription factor analysis, the estrogen-related receptor alpha (ESRRA) emerged as a central target connected to these aging-related changes. An unguided optimization search pinpointed potential interventions capable of restoring the brain’s metabolic flexibility and restoring action potential generation. These strategies include increasing the NADH cytosol-mitochondria shuttle, NAD+ pool, ketone β-hydroxybutyrate, lactate and Na+/K+-ATPase and reducing blood glucose levels. The model is open-sourced to help guide further research in brain metabolism.

Publication: https://www.biorxiv.org/content/10.1101/2023.08.30.555341v2 

Scientific Collaborator: Polina Shichkova, Ph. D

Data visualization tool: Blue Brain BioExplorer